Discovery, synthesis, and in vitro evaluation of West Nile virus protease inhibitors based on the 9,10-dihydro-3H,4aH-1,3,9,10a-tetraazaphenanthren-4-one scaffold.
نویسندگان
چکیده
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito-borne pathogen that causes a great number of human infections each year. Neither vaccines nor antiviral therapies are currently available for human use. In this study, a WNV NS2B-NS3 protease inhibitor with a 9,10-dihydro-3H,4aH-1,3,9,10a-tetraazaphenanthren-4-one scaffold was identified by screening a small library of non-peptidic compounds. This initial hit was optimized by solution-phase synthesis and screening of a focused library of compounds bearing this scaffold. This led to the identification of a novel, uncompetitive inhibitor (1a40, IC(50) = 5.41±0.45 μM) of WNV NS2B-NS3 protease. Molecular docking of this chiral compound onto the WNV protease indicates that the S enantiomer of 1a40 appears to interfere with the productive interactions between the NS2B cofactor and the NS3 protease domain; (S)-1a40 is a preferred isomer for inhibition of WNV NS3 protease.
منابع مشابه
Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 1,3,4,5-tetrasubstituted 1H-pyrrol-2(5H)-one scaffold.
West Nile virus (WNV), a member of the Flaviviridae family, is a mosquito-borne pathogen that causes a large number of human infections each year. There are currently no vaccines or antiviral therapies available for human use against WNV. Therefore, efforts to develop new chemotherapeutics against this virus are highly desired. In this study, a WNV NS2B-NS3 protease inhibitor with a 1,3,4,5-tet...
متن کاملSynthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 2-{6-[2-(5-phenyl-4H-{1,2,4]triazol-3-ylsulfanyl)acetylamino]benzothiazol-2-ylsulfanyl}acetamide scaffold.
In recent years, clinical symptoms resulting from West Nile virus (WNV) infection have worsened in severity, with an increased frequency in neuroinvasive diseases among the elderly. As there are presently no successful therapies against WNV for use in humans, continual efforts to develop new chemotherapeutics against this virus are highly desired. The viral NS2B-NS3 protease is a promising targ...
متن کاملPhenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors.
Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-...
متن کاملInhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold.
Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active c...
متن کاملSynthesis, X-Rays Analysis, Docking Study and Cholinesterase Inhibition Activity of 2,3-dihydroquinazolin-4(1H)-one Derivatives
In search of potent cholinesterase inhibitors, we have carried out the synthesis and biologically evaluation of various benzaldehyde based 2,3-dihydroquinazolin-4(1H)-one derivatives. In vitro assay results revealed that all the synthesized compounds showed activity against both enzymes (AChE and BChE) and in few cases, the inhibition activity was even higher than or comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ChemMedChem
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2012